The Footprint of Energy: Land Use of U.S. Electricity Production


Primary Investigator:
Landon Stevens, MPP

Student Research Associates:
Barrett Anderson
Colton Cowan
Katie Colton
Dallin Johnson

Introduction


Modern society requires a tremendous amount of electricity to function, and one of this generation’s greatest challenges is generating and distributing energy efficiently. Electricity generation is energy intensive, and each source leaves its own environmental and ecological footprint. Although many studies have considered how electricity generation impacts other aspects of the environment, few have looked specifically at how much land different energy sources require.

This report considers the various direct and indirect land requirements for coal, natural gas, nuclear, hydro, wind, and solar electricity generation in the United States in 2015. For each source, it approximates the land used during resource production, by energy plants, for transport and transmission, and to store waste materials. Both one-time and continuous land-use requirements are considered. Land is measured in acres and the final assessment is given in acres per megawatt.

Specifically, this report finds that coal, natural gas, and nuclear power all feature the smallest physical footprint of about 12 acres per megawatt produced. Solar and wind are much more land intensive technologies using 43.5 and 70.6 acres per megawatt, respectively. Hydroelectricity generated by large dams has a significantly larger footprint than any other generation technology using 315.2 acres per megawatt.

While this report does not attempt to comprehensively quantify land requirements across the entire production and distribution chain, it does cover major land components and offers a valuable starting point to further compare various energy sources and facilitates a deeper conversation surrounding the necessary trade-offs when crafting energy policy.

Read the full report here.